Composite Hollow Fiber Membranes for Post Combustion CO₂ Capture DOE Award: DE-FE0007514 Dhaval Bhandari

2014 NETL CO₂ Capture Technology Meeting

Acknowledgment

"The material described in the presentation is based upon work supported by the Department of Energy National energy Technology Laboratory (DOE-NETL) under award number DE-FE0007514."

Disclaimer

"This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Technology Overview

Gas Separations Membrane Fundamentals

Schematic representation of post-combustion CO₂ capture using hollow fiber membranes

Permeance (Productivity)

$$P_{CO2} = D_{CO2} * S_{CO2} = \frac{(Flux)_{CO2}.\ell}{\Delta p_{CO2}}$$

 $\frac{P_{CO2}}{\ell} [=] 1 \text{ GPU} = 10^6 \frac{\text{cm}^3(\text{STP})}{\text{cm}^2.\text{s.cm Hg}}$

Selectivity (Purity)

$$S_{CO2-N2} = \frac{P_{CO2}}{P_{N2}}$$

Solution–Diffusion Process

Gases dissolve in and then diffuse through a membrane

CO₂ Capture Membranes Technology

Key Challenges

- Post-Combustion Carbon Capture Technology
- Increase in cost of electricity (COE)
- Low membrane driving force
 - Low CO₂ concentration
 - Low feed gas pressure
- Large feed flow rates
 - Large capture system
- Membrane stability
 - Water vapor
 - SO₂, NO_x
 - Fly-ash

GE imagination at work

<u>Potential Solution</u> Hybrid Membrane + Cryogenic Process

- Reduce membrane CAPEX
 - \downarrow Membrane module cost
 - Permeance
- Reduce cryogenic CAPEX
- Increase driving force
 - \uparrow CO₂ concentration
 - ↑ Pressure ratio
- Scalable system
 - Composite Hollow fiber membranes
- Robust materials
 - Polyphosphazene polymers
 - HF module cleaning methods

Project and Team Overview

Project Funding

	Budget Pe	eriod 1	Budget P	Overall Project		
	10/01/2011-0	6/30/2013	07/01/2013-1			
	Total Planned (\$)	Total Spent (\$)	Total Planned (\$)	Total Spent (\$) 07/14/2014	Total Planned (\$)	
GE Global Research	1,097,536	1,296,620	585,394	313,891	1,682,930	
Western Research Institute	80,777	92,085	42,942	2,467	123,719	
Georgia Tech	215,922	171,375	186,552	137,370	402,474	
Idaho National Laboratory	475,000	491,933	264,000	217,125	739,000	
Total	1,869,235	2,052,013	1,078,888	670,853	2,948,123	

- 3-year, \$3 Million project, 20% cost share from GE
- BP-1 date revised by 1Q with no cost extension
- Project spend rate on-target
- Project expected to finish on-budget, delivering on key tasks

Project Summary

Project Goal: Develop bench-scale coated composite hollow fiber membrane materials and processes for CO_2/N_2 separation in coal flue-gas at least 90% CO_2 capture with less than 35% increase in levelized cost of electricity

- Hollow fiber fabrication & coating
- Module design

 Technical and economic feasibility analysis Idaho National Laboratory

- Polymer development
- Polymer property optimization
- Coating solution development

- Georgia Tech Tech
- Fiber coating process development
- Effect of fly ash on membranes

 Membrane performance validation in coal flue-gas

Fundamental studies Performance validation

Project Overview

Develop thin film polymer composite hollow fiber membranes and processes for economical post-combustion CO_2 capture from coal flue-gas

Project Activity Schedule

		Task Owner Year 1 Year 2 Year					- 3										
Major Tas	ks	GE	INL		WRI	Q1	Q2		Q4	05			Q8	09			012
Task 1	Project Management	•				È	Ì	Ż	Ż	Ì	Ż	È		Ì			₹
Task 2 2.1 2.2 2.3 2.4 2.5 2.6	Optimize Polyphosphazene Polymer and Coating Solution Produce coating solutions in appropriate solvents Adjust Phosphazene cross-linking Optimize Phosphazene stabilization Refine Phosphazene solution properties Optimize Phosphazene performance and coating properties Document final results and path forward		•••••							•						•	
Task 3 3.1 3.2 3.3 3.4	Refine hollow fiber spinning process and support material Optimize hollow fiber spinning process	•		•													
4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10		• • •		••••••										•		•	
5.2 5.3	Test Membranes at Bench-Scale in Coal Flue Gas Enhance bench-scale testing facilities Coal flue gas performance test to benchmark flat membranes Coal flue gas performance test composite hollow fiber membrane modules Coal flue gas performance test optimized composite hollow fiber membrane modules	•			•											•	
	Conduct Process Evaluation and Module Design Conduct preliminary technical and economic feasibility study Conduct final technical and economic feasibility analysis and EH&S assessment Analyze tradeoffs for module designs and flow configuration	•						•									
Legend:	♦ Milestone \triangledown Deliverable \diamondsuit Decision Point Tas	ks	5, 9	SL	ıb	-t	a	sk	Ś	a	In	d	0	W	'n	e	^S
n at work						in	t	er	·li	n	ke	9 C					

Progress and Current Status

Project BP-1 Status (2012-2013)

BP-1 Deliverable	BP-1 Status	
CO_2 selective polymer material with $P_{CO2} = 200$ Barrer, $S_{CO2/N2} \ge 30$	Polyphosphazene materials synthesized with P _{CO2} = 100-500 Barrer, S _{CO2/N2} = 20-40	
Fabricate high porosity hollow fiber (HF) supports	1 m strands of HF support fabricated with P/ ℓ_{CO2} > 20,000 GPU, surface pores \approx 20-50 nm	
Develop processes to fabricate defect-free composite HF membranes	Batch, dip coating (lab-scale); roll-to-roll coating (bench-scale) processes developed. Defect-free 10" membrane modules fabricated.	
Demonstrate stable performance under realistic flue-gas conditions	Composite HF membrane module tested under realistic flue-gas mixture. $S_{CO2/N2} = 25-30$, stability > 100 h, $P/\ell_{CO2} < 50$ GPU.	
Preliminary techno- economic analysis study	Membrane systems model developed using Aspen Plus® and Aspen Custom Modeler®	

Project BP-2 Status (2013-2014)

BP-2 Deliverable	BP-2 Status				
Scale-up polymer synthesis process	Polyphosphazene materials synthesized at > 100 g scale with $P_{CO2} = 100-500$ Barrer, $S_{CO2/N2} = 20-40$				
Scale-up HF support fabrication	50 m continuous spools of HF support fabricated with surface pore size \approx 20-50 nm, P/ ℓ_{CO2} < 1,000 GPU				
Scale-up composite HF membrane fabrication	Defect-free 10" membrane modules with $S_{CO2/N2} \ge 30$ and P/ℓ_{CO2} up to 1000 GPU fabricated. Composite HF membrane scale-up in progress				
Demonstrate stable performance under realistic flue-gas conditions	Membrane mini-modules with initial $S_{CO2/N2} \ge 30$ and $P/\ell_{CO2} > 1000 \text{ GPU} \rightarrow \text{not stable} > 100 \text{ h testing}$ Membrane mini-modules with $S_{CO2/N2} \ge 30$ and 100 h stability $\rightarrow \text{low } P/\ell_{CO2} < 50 \text{ GPU}$				

Membrane permeance-selectivity and stability key to scale-up

Polyphosphazene Materials

Polyphosphazene polymers provide excellent CO₂ separation, permeability and tunability for coating

* L. M. Robeson, The Upper Bound Revisited. J. Membr. Sci. 2008, 320, 390 *C.J. Orme, M.K. Harrup, T.A. Luther, R.P. Lash, K.S. Houston, D.H. Weinkauf, F.F. Stewart, Characterization of gas transport in selected rubbery amorphous polyphosphazene membranes, J. Membr. Sci. 186 (2001) 249

Polyphosphazene Coating Development

Properties Performance Compatibility **Cross-linking** Mechanism Improve physical Achieve target • Solubility in permeability and solvents benign handling Maintain High MW to selectivity to HF supports dimensional Long term reduce support integrity stability infiltration 2008 CO₂/N₂

- Desired polymer characteristics are inter-dependent
- Polymers developed to meet project targets
- Characterization using NMR, DSC, TGA, permeation testing

Polyphosphazene Cross-Linking

Effect of cross-linking time on polyphosphazene flat sheet permeability and selectivity

- Polyphosphazene permeability sensitive to thermal cross-linking time
- Optimum cross-linking desired for dimensional stability on HF supports

Hollow Fiber Support Layer

Hollow fiber supports

1 m strands of HF support with controlled surface pore size (\approx 20-50 nm), high permeance (P/ ℓ_{CO2} > 20,000 GPU) fabricated and spinning parameters developed

Hollow Fiber Support Scale-up

HF support spool fabrication

HF support spool solvent exchange

HF support spool drying

- 30-50 m continuous spools of HF support fabricated successfully
 - Surface pore size \approx 20-50 nm achieved
 - $P/\ell_{CO2} < 1,000$ GPU; further improvement desired

Effective solvent exchange and high pore density key to improving permeance

Composite Hollow Fiber Fabrication

- Key factors affecting HF support coatability
 - Reduced surface pore size
 - Substrate pore uniformity
 - Reduced physical handling

Membranes Testing

INL test rig

GE test rig

WRI test rig

- Composite HF membrane mini-modules (10" length) and flat-sheet membranes performance tested
- INL and GE test rigs $\rm N_2/\rm CO_2/\rm O_2$ 80/15/5 (vol. %) saturated with water vapor
- WRI test rig $N_2/CO_2/O_2/NO/SO_2$ 80/15/5/80 ppm/50 ppm (vol. %) saturated with water vapor

Composite HF Membrane Module Testing

HF membrane module performance testing at WRI under realistic flue gas conditions

Composite HF membrane modules with high cross-linking showed $S_{CO2/N2} \ge 30$ and >100 h stability, but with low $P/\ell_{CO2} < 50$ GPU

Composite HF Membrane Module Testing

HF membrane module performance testing under simulated flue gas conditions

Composite HF membrane modules with lower cross-linking showed initial $S_{CO2/N2} \ge 30$, $P/\ell_{CO2} > 1000$ GPU, but poor stability >100 h testing

Membrane Fouling Studies

HF Membrane fouling analysis setup

- Composite HF membranes exposed to Bituminous coal fly ash loaded test gas (CO_2/N_2) at 35 psig at 35 °C
- Membrane performance found stable over > 100 h testing
- Membrane surface cleaning procedures under development

Technology Development Path

Anticipated Technology Roadmap

- The team expects to deliver a promising membrane material, hollow fiber module and process configuration for membrane based CO_2 capture from coal flue gas
- Emerging opportunities for CO₂ capture in enhanced oil recovery (EOR), natural gas processing, greenhouses, beverage applications
- Further R&D required to improve stability of high selectivity and permeance composite hollow fiber membranes
- Effective scale-up of the composite hollow fiber membranes will be a part of any assertions to commercialization pathway

Thank You

